Designation

CIP Composites™ are represented by three (3) digits based on the chosen textile, lubricant and resin.

CIP X X X

Textile		Lubricant			Resin	
100	Polyester	000	None Electrical insulators		001	Standard
200	Poly/PTFE combination	010	Graphite	Dry conditions	002	Marine
300	Nomex®	020	Moly (MoS ₂)	Wet or dry conditions	003	High Temp
		030	PTFE	Wet or dry conditions needing lower friction than moly		
		040	Graphite & PTFE	Dry conditions needing lower friction		
		050	Moly & PTFE	Wet or dry conditions needing lower friction		
		000A	Enhancement A™	Increases strength and lower friction		
		000B	Enhancement B™	Reduces stick slip and noise in slow oscillating applications		

CIP Composites™ popular material combinations.

CIP Hydro™	Polyester/PTFE Textile Proprietary Lubrication Polyester Resin	Ideal for situations requiring the lowest possible friction without grease. Targeted for hydroelectric applications. Tested by Power Tech Labs	CIP 131	Polyester Textile PTFE Lubrication Polyester Resin	For less critical situations requiring wet or dry operation.
			CIP 121	Polyester Textile Moly Lubrication	Low friction and negligible water swell, this is ideal when moisture may be present (wet).
CIP Marine™	Polyester Textile Proprietary Lubrication Marine Resin	For wet environments typically used as strut bearings and rudder bushings. Marine Type Approved	Pol	Polyester Resin	
			CIP 251A	Poly / PTFE Textile PTFE & Moly Lubrication Polyester Resin Enhancement A™	For situations where low friction is critical, possibly oscillating motion in wet or dry environments.
CIP 151A	Polyester Textile PTFE & Moly	Used in wet and dry situations, offers additional strengths, low friction.			
	Lubrication Polyester Resin Enhancement A™				

Johnson Metall AB is the Nordic countries biggest manufacturer of sliding bearings, hollow bars and mould components made of bronze. Manufacturing unit is located in Sweden, and sales companies in Denmark and Norway. The head office is in Örebro.

SWEDEN

Johnson Metall AB
Visiting address: Stålgatan 15, 703 63 Örebro
Postal address: Box 1513, 701 15 Örebro
Delivery adress: Slöjdgatan 2-4, 703 63 Örebro
Phone: +46 (0)19 17 51 00
Mail: info@johnson-metall.com
Internet: www.johnson-metall.com

DENMARK

Johnson Metal A/S
Dybendalsvænget 2
DK-2630 Taasttrup
Phone: +45 36-70 00 44
Mail: j-m@johnson-metal.dk

NORWAY
Johnson Metall AS
Apalveien 1
NO-3360 GEITHUS
Phone: +47 32 78 32 00
Mail: sales.geithus@johnson-metall.com

CIP CompositesTM

Self lubricating bearings Textile reinforcement

Where bronze comes first

CIP Composites™ For light weight high pressure low speed

are self lubricated
bearing and wear
materials. It is a highly
engineered textile
reinforced composite
used to reduce
lubrication systems and
maintenance.

Manufactured by
Columbia Industrial
Products (CIP),
USA, products are
custom designed and
fabricated to customer's
specifications.

Johnson Metall AB is the Scandinavian distributor of CIP Composites™ since 2004.

Function

CIP Composites™
are high quality
self lubricated
bearing materials
with exceptional
mechanical
and physical
properties. Used
in applications
requiring high

performance custom bearings and wear pads. CIP Composites™ are ideal for high load, low speed operations, especially when reducing friction and where weight is critical.

Design

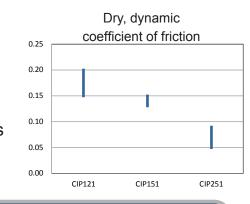
All parts are custom designed and manufactured based on the application. CIP offers customers bearing diameters up to 1.52 meters and sheets up to 152 mm thick.

Solid lubricants

CIP Composites™ are laminated polymer materials made by impregnating textiles with thermosetting resins. Solid lubricants are added to the resin to provide evenly dispersed lubrication throughout the material, inherently eliminating the need for external lubrication. CIP offers customers an array of different textile, lubricant and resin combinations. Working with CIP and Johnson Metall customers, we determine the best combination based on application and environment.

Properties

Physical Properties Tests performed on CIP100 Series sheet material.


Compressive Strength (ASTM D695)	
Ultimate	345 MPa
Yield	103 MPa
Parallel	93 MPa
Modulus	3,447 MPa
Tensile Strength (ASTM D638)	75 MPa
Tensile Modulus of Elasticity (ASTM D638)	3,240 MPa
Poisson's Ratio (ASTM D3039-08)	0.231
Shear Strength (ASTM D2344)	82 MPa
Flexural Modulus of Elasticity (ASTM D790)	1,793 MPa
Hardness Rockwell M (ASTM D785)	100
Density (ASTM D792)	1.3 g/cm ³
Water Swell (ASTM D570)	<0.15%

Thermal Properties	001&002 Resin	003 Resin
Operating Temperatures	-40° to 93° C	-40° to 204° C
Coefficient of Thermal Expansion	20° to 93° C	20° to 204° C
Normal to Laminate	1.9 x 10 ⁻⁵ /Δ°C	2.2 x 10 ⁻⁵ /Δ°C
Parallel to Laminate	1.0 x 10 ⁻⁵ /Δ°C	1.1 x 10 ⁻⁵ /Δ°C

Friction

The coefficient of friction for CIP CompositesTM range from 0.05-0.20. Actual friction values vary with respect to the application parameters: shaft material, surface finish, load, speed, environment and external lubrication. The lowest values are obtained with the addition of Enhancement A (for example: CIP151A).

Machining

CIP Composites[™] are readily machinable by conventional machining techniques and, as a general guide, may be treated as bronze, but should be machined dry without coolant. Our materials are nontoxic although it is advisable to use adequate dust extraction when machining.

For turning, tungsten carbide-tipped tools should be used to obtain a fine finish. High speed steel tools can be used for machining where accuracy below 0.005" (0.12 mm) is not required and for small quantity production.

Installation Methods

Bearings & Wear Pads

CIP Composite™ bearings can be designed for press-fit, freeze-fit or glue-in installation. Shoulders, bolt on rings, other rings, or keepers can be used to prevent the bearing from moving over time. Flat components such as wear pads can be retained by countersunk screws or metal inserts and located by keeper plates where high lateral or shearing loads are anticipated.

Counter Surface

The counter surface finish of the mating operating component has a major effect on the performance of the composite. Surface finish should be from 4-32 micro-inches (0.7 Ra) and hardness of Rockwell 80B. Suitable materials for shafts, thrust faces, etc., would be hardened steels or stainless. Hard chrome plated steel surfaces cause high wear rates under certain conditions, and burnishing or other surface finish treatments should be considered as an alternative. The main criteria is that the mating surface should be free from cutting edges, and lubrication grooves or holes.

External Lubrication

CIP Composites[™] can be used with external lubricants if desired. We can custom design bearings and wear pads with lubrication grooves for water, grease or oil. The material performs excellently in both fresh and salt water. Although most lubricants will not harm CIP Composites[™], we do recommend the use of synthetics.